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Abstract

In this paper we rely on the constructal law of maximization of flow access in order to construct a theory of geometry generation
(selection, evolution) during molten droplet impact. We show that immediately after impact the liquid spreads inviscidly as a ring with
a radial velocity that scales with the initial impact velocity. If the initial droplet is small and slow enough, the ‘splat’ comes to rest (dies)
viscously, as a disc. If the droplet is large and fast enough, the ring splashes and is continued outward by needles that grow radially until
they are arrested by viscous effects. We optimized the number of needles such that the total splash time is minimum. The theoretical
dimensionless group that governs the selection of geometry (G) is the ratio of two lengths, the final radius of the disc that dies viscously,
divided by the radius of the still inviscid ring that just wrinkles. Splats form when G 6 O(1) and splashes are favored when G P O(1).
Experimental measurements reported in the literature confirm several of the features of the constructal development of splat vs. splash
flow architecture.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the puzzles regarding molten droplet behavior
when impacting a dry smooth solid surface is why some-
times droplets spread as discs when they hit a solid wall,
and why sometimes they ’splash’ by shooting liquid as jets,
fingers and smaller droplets in selected directions. The
question of flow morphology—to understand the genera-
tion of shape and structure and to predict it—is enor-
mously important. There are many applications where
droplet impact behavior spells success or failure, especially
in new technologies based on using small scale droplets for
spray coating with molten metal, spray painting and print-
ing, forensic medicine (blood splatter), injection systems
and thin-film coatings. This question is important funda-
mentally as well, because without a pure theory for why
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both types of droplet impact behavior are observed there
is no hope for the development of predictive numerical
tools, and for robust correlations to guide future design
and sizing of manufacturing processes.

The experimental and theoretical progress on droplet
impact behavior was reviewed extensively in a recent paper
by Haferl et al. [1], among others, and because of this it is
not reviewed again here. The main thread of this new body
of knowledge is that the two types of post-impact behavior
(disc vs. splash) have been observed and documented exten-
sively. Attempts have been made to report these observa-
tions on flow regime maps involving the dimensionless
groups revealed by dimensionless analyses invoking the
Buckingham p-theorem, for example, the Reynolds number
(Re), Weber number (We) and Ohnesorge number (Oh)—
all such numbers being based on the properties of the
spherical liquid droplet before impact (see Nomenclature).

Observations show that the flow-map boundary between
droplets that splash and droplets that do not splash can be
described by correlations of the type OhmRep = constant,
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Nomenclature

A finger cross-sectional area, m2

D droplet diameter, m
g gravitational acceleration, m/s2

G geometry selection number, Eqs. (39) and (40)
K constant, We1/2Re1/4 at the transition between

disc growth and splashing
L needle length, m
m exponent
n number of needles, or fingers
Oh Ohnesorge number, We1/2/Re
p exponent
P pressure, Pa
r radial dimension, m
Re Reynolds number, VD/m
S ring cross-sectional area, m2

t time, s
u radial velocity scale, m/s
Ua radial velocity of the liquid in the ring, m/s

V droplet initial velocity, m/s
We Weber number, qDV2/r

Greek symbols

d viscous penetration thickness, m
m kinematic viscosity, m2/s
q liquid density, kg/m3

r surface tension, N/m
s viscous shear stress, Pa

Subscripts

max maximum
min minimum
opt optimum
1 viscous end of disk-shaped development
2 start of needle formation
3 viscous end of needle growth
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where the half-domain of splashing behavior is occupied by
OhmRep > constant [2]. More recently, Mundo et al. [3]
conducted an extensive experimental program that led to
a correlation of the same type, We1/2Re0.25 = K (which is
the same as OhRe1.25 = K), where the constant is K =
57.7 for a set of experiments using water, ethanol or
water-sucrose-ethanol droplets impacting a smooth stain-
less steel substrate. More experimental data are provided
by two recent theses [4,5].

Correlations that are tight, robust and confirmed by new
experiments call for a theory to explain their origin, and to
predict them. Mundo et al. [3] proposed such a theory,
which was based on a global accounting for the conserva-
tion of liquid energy and mass during droplet impact. Their
analysis generated an expression for the boundary between
splashing and no splashing, which next to Oh and Re con-
tained two additional parameters: the contact angle and the
dimensionless ratio Dmax/D, where D is the original droplet
diameter and Dmax is the maximal diameter of a liquid
spreading as a disc. Mundo et al.’s formula passes through
the Oh(Re) data that mark the splashing/no splashing
boundary, but deviates from the data when Re < 200 and
Re > 2000. Furthermore, the Mundo et al. formula does
not have the power-law structure of the empirical correla-
tion We1/2Re0.25 = K, in which one should note that there
are two empirical constants that were determined by opti-
mizing the curve fitting of the data: K and the exponent
0.25.

In this paper we report a purely theoretical argument
that anticipates not only the observed transition between
splashing and no splashing, but traces the entire scenario
of droplet impact behavior to the action of the constructal
law [6,7]: the flow geometry that is selected evolves in time
such that it maximizes the spreading of the liquid, and
accelerates the arrival of equilibrium. The predictive pro-
gress made by invoking the constructal law is reviewed in
[6,7], and is not reviewed again here. In this paper, we show
that everything—the time and length scales of the liquid
flow before and after splashing—results from the invoca-
tion of this principle, including the power-law boundary
We (Re) and its two constants K and 0.25 (the theoretical
value of the latter turns out to be 1/4, analytically). Most
remarkable is the fact that the analysis reported in this
paper was formulated not to ‘‘derive’’ Mundo et al.’s cor-
relation (the discovery of the correlation was one of the
surprises of this work), rather the objective was to see
whether the principle of maximization of flow access antic-
ipates the splashing phenomenon as successfully as it did
other natural flow architectures such as turbulent structure,
Bénard convection and dendritic solidification [6,7], and,
more recently, the architecture of the human lung [8], the
hydraulic jump phenomenon [9] and the speed and fre-
quencies (stride, flapping) of all flying, running and swim-
ming animals [10].

From the outset, we admit that the complexity of the
splashing droplet phenomenon forces us to formulate the
discussion in terms of scale analysis [11]. Furthermore,
complexity makes it necessary to define unambiguously
the various scales of the phenomenon, which change from
time to time. We have done this carefully in the following
analysis, and we draw the reader’s attention to the defini-
tion of the subsequent time scales (t1, t2, t3) and on the sce-
nario that emerges.

2. Scale analysis of ring-shaped flow

Consider a spherical liquid droplet of diameter D, vis-
cosity l and density q, which impacts a solid wall. The



Fig. 1. Droplet parameters before and during spreading on the wall.

Fig. 2. Ring-shaped spreading of the liquid.
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droplet velocity V is perpendicular to the wall at r = 0, as
shown in Fig. 1. The liquid droplet becomes a splat that
spreads on the wall. We are interested in the scales (length,
time) and the morphology of the splat. This means that the
following scenario refers to times longer than the initial
time interval of splat deformation (t � D/V), during which
the droplet touches the wall and is deformed.

Let t = 0 mark the moment when the splat is born on
the wall. This movement is indicated by the deformed
droplet shown in the lower part of Fig. 1. The stagnation
of the liquid causes an instantaneous excess pressure on
the order of

P � 1

2
qV 2 ð1Þ

This pressure drives the splat liquid to the distance r, which
is the instantaneous radius of the splat. We assume that
immediately after t = 0 the splat is symmetric about the
r = 0 axis, and its flow is inviscid. The momentum equation
in the r direction is

q
ou
ot
þ u

ou
or

� �
¼ � oP

or
ð2Þ

where u is the liquid velocity component in the r direction.
From kinematics, the radial velocity scale is

u � r
t

ð3Þ

According to the method of scale analysis [11] the momen-
tum Eq. (2) expresses the competition between three scales:

q
u
t
; qu

u
r
;

P
r

. ð20Þ

In view of Eq. (3), the first two scales are both of order
qr/t2. In conclusion, the momentum Eq. (2) requires the
following balance of two scales:

q
r
t2
� P

r
ð4Þ

Combining Eqs. (4) and (1), and neglecting (at this stage)
factors of order 1, we conclude that the splat radius in-
creases linearly in time,
r � Vt ð5Þ
This means that the splat radius moves outward with a
speed of the same order as the speed of impact,

u � r
t
� V ð6Þ

Let S be the cross-sectional area of the splat (in the
plane of Fig. 2) at the time t, such that the conservation
of droplet liquid volume requires

D3 � rS ð7Þ
At this stage we do not know whether the splat is a flat disc
or a ring: the shape of the splat will be determined next.
The linear momentum of the droplet before impact is
(qD3)V. The linear momentum of the splat liquid is (qSr)Ua

where Ua is the S-averaged radial velocity with which the
splat liquid moves. The conservation of liquid linear
momentum requires:

D3V � rSU a. ð8Þ
Eqs. (7) and (8) require

Ua � V ð9Þ
According to Eq. (6), V is the velocity of the splat radius.
Therefore, Eq. (9) states that all the splat liquid moves
radially with the same speed as the splat radius, and from
this follows the conclusion that the splat liquid must be
located close to its rim. This is why in Fig. 2 the splat liquid
is shown as a ring of radius r and cross-section S.

The length scale of the ring cross-section is S1/2. This
statement is equivalent to the assumption that the contact
angle between the liquid–air surface and the solid surface is
not infinitesimally small, i.e. that the shape of the ring
cross-section S is not slender. This assumption covers most
of the known liquid–air–solid contacts, which in the pres-
ent scale analysis are represented by cross-sectional shapes
(S) that have a single length scale (S1/2), not two, a width
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and a thickness. Next, by combining Eqs. (5) and (7) we
find that the ring becomes thinner in time,

S � D3

tV
ð10Þ

Friction works toward slowing the spreading of the
splat. The thickness of viscous penetration from the wall
transversally through the splat is

d � ðmtÞ1=2 ð11Þ
where m is the liquid kinematic viscosity. The splat flow be-
comes viscid, and its spreading stops when viscous diffu-
sion sweeps the entire splat cross-section. This happens
when d � S1/2, which in view of Eqs. (10) and (11) becomes
the time scale

t1 �
D3

mV

� �1=2

ð12Þ

The splat radius at this time is

r1 �
VD3

m

� �1=2

ð13Þ

or

r1

D
� Re1=2 ð14Þ

where Re is the Reynolds number of the original droplet,

Re ¼ VD
m

ð15Þ

In conclusion, Eq. (14) shows that larger and faster drop-
lets make relatively larger splats.

3. Splashing and needle-shaped flow

Next, we turn our attention to the effect of surface ten-
sion, and the stability of the circularly symmetric splat
shape. According to Taylor’s stability theory for a horizon-
tal liquid layer of density q, with its free surface facing
downward, and gravity acting downward, the wavelength
k that separates two adjacent droplets or jets is (Fig. 3)

k � 10
r
qg

� �1=2

ð16Þ
Fig. 3. The wavelength of Taylor instability.
Here 10 is the order of magnitude of the factor (2p31/2 or
2p61/2) that appears in the exact solution to the stability
problem [12]. In place of qg, the force that pushes the splat
liquid against the r-radius free surface is P/r � qr/t2 �
qV/t. Eq. (16) becomes

k � 10
rt
qV

� �1=2

ð17Þ

The wavelength of rim instability increases as t1/2, whereas
the rim radius increases as t, as shown in Fig. 4. At short
times, r is smaller than k, and the splat remains round.
At sufficiently long times, the rim is long and flat enough
to accommodate a ripple of several (n) wavelengths,

r � nk ð18Þ
where n is a factor larger than 1, but not much larger, for
example O(10). The time t2 when Eq. (18) becomes true is
estimated from Eqs. (17) and (18)

t2 � ð10nÞ2 r

qV 3
ð19Þ

When t2 < t1, the splat develops a wavy rim before its
motion is arrested by wall friction. This inequality is anal-
ogous to the comparison of two time scales that was used
to predict flow morphology in Bénard convection, lami-
nar-turbulent transition, and dendritic crystal growth
[6,7]. By using Eqs. (12) and (19), we find that the splashing
condition t2 < t1 can be written as

We1=2Re1=4 > 10n ¼ K ð20Þ
where We is the droplet Weber number,

We ¼ qDV 2

r
ð21Þ

The splat ring radius at the time t = t2 is

r2

D
� ð10nÞ2

We
ð22Þ

If the inviscid splashing criterion (20) holds, then the
liquid in the ring continues to flow radially outward in
the form of n fingers. One such finger is sketched in
Fig. 4. The growth of the ring radius and the wavelength of Taylor
instability.



Fig. 5. Needle shape and parameters.
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Fig. 5. The liquid enters with the velocity V through the
r = r2 end of the finger. Its bottom layers are slowed down
viscously by the wall, while fresh liquid proceeds (over the
top) to longer radial distances.

The farthest reach (L) can be estimated in two ways, as
follows. Let A be the scale of the finger cross-sectional area,
and A1/2 the length scale of the finger cross-section. This is
again the wettability assumption invoked above Eq. (10),
according to which contact angles are not infinitesimally
small, and the liquid cross-sectional shape has a single
length scale (A1/2), not two. The finger control volume is
pushed from the left by the impulse qV2A, and from the
right by the wall friction force,

qV 2A � sLA1=2 ð23Þ
where s � lV/AS1/2. In conclusion, the final length of the
finger is

L � AV
m

ð24Þ

Mass conservation requires nSL � D3, and, after using
Eq. (24), the dimensionless finger length becomes

L
D
� Re

n

� �1=2

ð25Þ

The time interval during which the finger grows is

t3 �
L
V
� A

m
ð26Þ

This t3 expression suggests an alternative calculation of L:
the finger length is the distance traveled by the V liquid
during the time required by that liquid vein to be pene-
trated by viscous diffusion through its thickness A1/2. That
time is such that A1/2 � (mt3)1/2, which leads to Eq. (26)
and, after invoking mass conservation, to Eq. (25).

To summarize, we determined the final length and time
scales of a splat that remains ring shaped until its viscous
death (r1, t1). We also determined the final length scale
(r2 + L) and total time scale (t2 + t3) of a round splat that
splashes into n fingers. Taking the (r1, t1) scales as refer-
ence, we find that the ring and splash scales are of the same
order of magnitude (see Eq. (20)):

r2 þ L
r1

� ð10nÞ2

WeRe1=2
þ 1

n1=2
� 1 ð27Þ

t2 þ t3

t1

� ð10nÞ2

WeRe1=2
þ 1

n1=2
� 1 ð28Þ
Next, we make two additional observations in line with
the constructal law of maximization of flow access, or
acceleration of approach to equilibrium. First, the total
splash time (t2 + t3) can be minimized by selecting the num-
ber of fingers. The optimal number is

nopt �
WeRe1=2

4� 102

� �2=5

ð29Þ

with the corresponding minimum splash time

ðt2 þ t3Þmin

t1

� 5

44=5

102

WeRe1=2

� �1=5

� ðr2 þ LÞmin

r1

ð30Þ

These results are order-of-magnitude accurate because they
come from expressions (27), (28), which are based on scale
analysis. Eqs. (29) and (30) can also be obtained in an
order-of-magnitude sense by setting the two terms of Eq.
(27) equal to each other. This alternate approach is the
intersection of asymptotes method, which has been used sev-
eral times in constructal theory to predict natural flow con-
figurations, e.g., the first eddy of a turbulent flow, the onset
of Bénard convection, the birth of needles in dendritic crys-
tals and the characteristic length scale of cracks in volumet-
rically shrinking solids [6,7].

The second observation is that in view of the splash-
formation criterion (20), the splash time is shorter than
the ring time,

ðt2 þ t3Þmin < t1 ð31Þ
If fingers can form, they will form, because fingers promise
to bring the liquid to rest faster than the ring-shaped flow.
This time minimization criterion is the same as the con-
structal law of maximization of flow access [6,7].

4. Dimensionless summary of ring and needle flows

One of the attributes of theory is that it organizes the
presentation of the phenomenon in terms of the smallest
and most relevant dimensionless groups. In this paper we
have identified several length and time scales. If the post-
impact flow of liquid is ring shaped (Fig. 2), then the time
of the length and time scales when the growth of the ring is
stopped by viscous diffusion are

r1

D
� Re1=2 t1m

D2
� Re�1=2 ð32Þ

The time when the ring develops periodic deformations and
fingers start to grow is characterized by the scales



Table 1
Experimental measurements of the initial spreading velocity Ua: the
tabulated values are for the ratio Ua/V (data from [5])

Substrate V = 1.2 m/s V = 3.6 m/s

Smooth wax 3.42 3.30
Smooth glass 3.45 3.21
Rough wax 3.98 3.49
Rough glass 3.84 3.21
PVC 300 3.41 3.69
PVC 100 3.38 3.63
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r2

D
� ð10nÞ2

We
t2m

D2
� ð10nÞ2

ReWe
ð33Þ

Dividing Eq. (33) by Eq. (32), we find how the scales of the
beginning of splashing (r2, t2) are smaller than the scales of
the ring-shaped droplet at the end of its symmetric growth
(r1, t1):

r2

r1

� t2

t1

� ð10nÞ2

WeRe1=2
< 1 ð34Þ

These conclusions can be refined further by using the nopt

scale of Eq. (29) and introducing it in Eqs. (20) and (34).
Accordingly, K � 10n is

K � 10

4002=5
We2=5Re1=5 ð35Þ

Introducing this K estimate into the splashing criterion
t2 < t1, or Eq. (20), we obtain

ðWe1=2Re1=4Þ1=5
>

10

ð400Þ2=5
� 1 ð36Þ

We may compare this theoretical criterion with the experi-
mental correlation [3]

ðWe1=2Re0:25Þ1=5
> K1=5 ð37Þ

to see that K = 57.71/5 � 1, which means that the theoreti-
cal criterion (36) agrees remarkably well with experimental
data. To this comparison we will return in Table 2.

Another effect of the optimized number of needles
becomes visible when we substitute Eq. (20) into Eq. (34):

r2

r1

� t2

t1

� 100=ð400Þ4=5

ðWe Re1=2Þ1=5
� 1

G
ð38Þ

where

G ¼ ðWeRe1=2Þ1=5 ð39Þ
Unlike WeRe1/2, the new dimensionless group G has a
physical meaning: G is the ratio of two lengths

G ¼ final radius of disc that dies viscously

radius of still inviscid ring that just wrinkles
ð40Þ

This is why G P O(1) is the criterion for the occurrence of
wrinkles on the rim at time t2: the wrinkles grow as needles
from t2 to t2 + t3. On the other hand, when G 6 O(1), the
splat stops flowing when it is round, and consequently it
has no future as a shape other than the round disc at rest.

Finally, to compare the scales of the splash ‘just before’
vs. ‘end of splashing’, we divide Eq. (30) by Eq. (38):

ðr2 þ LÞmin

r2

� ðt2 þ t3Þmin

t2

� 5 ð41Þ

These ratios of length and time scales are the same constant
which is on the order of 1. The size of the splashed droplet
size is proportional to the size that the splat has at the start
of asymmetric deformations. The fact that the ratios of
length scales match the ratios of time scales, Eqs. (30)
and (41), is a consequence of the constant velocity scale
of the ring and finger fluid, V.

5. Experimental confirmation

The scaling laws uncovered in this paper are now com-
pared with a set of experimental results published recently
[5,13], where the experimental device was designed to
record the shape evolution of droplets falling by gravity
on solid substrates. Results are presented for millimetric
droplets (1–3 mm in diameter) with relatively low velocities
(1–4 m/s) and substrates of different roughness and wetta-
bility. The range of corresponding Reynolds numbers
extends from 3500 to 12500, which corresponds to Weber
numbers in the range 57–254.

The first theoretical result that we compare with exper-
iments is the order of magnitude of the radial velocity Ua

after impact. The analysis [Eq. (9)] shows that the initial
radial velocity is on the order of the impact velocity. The
experimental data available in Ref. [5] and displayed in
Table 1 are for two impact velocities, V = 1.2 and 3.6
m/s. The tabulated data show that for both sets of experi-
ments the ratio Ua/V is nearly constant. This means that
Eq. (9) is verified, with a proportionality factor of 3.5 (with
standard deviation of 10%), which is a factor on the order
of 1.

Another important feature of the experimental data is
that the ratio Ua/V is independent of the nature of the
impact surface. This is in accord with the analysis that
led to Eq. (9), which is based on the observation that the
initial flow is inviscid, hence unrelated to the wall
condition.

A systematic observation of the splat structure evolution
was conducted in Ref. [5], by increasing step by step the
impact velocity of droplets of the same diameter. The aver-
age value of the highest velocity for spreading and the low-
est velocity for splashing yields a ‘‘transition’’ velocity, with
a typical accuracy of 5%. Several substrates (glass, wax,
PVC) and roughnesses ranging from 0.003 to 60 lm were
used in the experiments, and this led to significant scatter
in the results.

The values of the corresponding critical values for
We1/2Re1/4 are shown in Table 2. Recall that We and Re

are based on liquid properties and initial droplet diameter
and velocity. In spite of the large scatter in the results, this
table clearly shows the relevance of the group We1/2Re1/4 as



Table 2
Experimental ranges of the transition between the spreading and the
splashing regimes for several liquids and surface roughnesses (data from
[5])

Liquid D (mm) V (m/s) We1/2Re1/4 G = (WeRe1/2)1/5

Water 3.44 1.55–3.15 90–220 6–8.7
Ethanol 2.80 1.26–1.85 90–146 6–7.3
Ethanol 1.34 1.58–2.67 69–133 5.4–7.1
Silicone oil 2.30 2.91 128 7
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a transition parameter, because the order of magnitude of
102 is found for the transition in all the cases. As expected,
the lower values (69–90) are found for the roughest sur-
faces. It is worth noting that the value given in Ref. [3]
(namely We1/2Re0.25 = 57.7) is the lower bound of this
range.

Table 2 also shows the corresponding values of G, which
is the dimensionless transition criterion recommended by
the arguments advanced in this paper, Eqs. (36) and (39).
The experimental data collected in the table show that
the transition is consistently associated with one G value,
which is consistent with the transition criterion stated
under Eq. (40).

Table 3 shows one more verification of the theory devel-
oped in this paper. The data are for a single droplet of ini-
tial velocity V and sphere diameter D, which impacts a
surface perpendicularly and forms a splat that comes to
rest as a disc. The observed final diameter of the disc is
D1,exp. This dimension is compared with the theoretical
scale r1 shown in Eq. (13). Table 3 shows very good agree-
ment between D1,exp and r1 for the first six cases tested: the
ratio r1/D1,exp is on the order of one for each of the three
liquids.

The seventh case (water) deviates somewhat from this
pattern. The ratio r1/D1,exp is one order of magnitude
greater than in the other three cases, meaning that the
water splat comes to rest as a disc with a radius that is
one tenth of the theoretical scale. This is a sign that the
water splat departs from the model on which Eq. (13) is
based. Because D1,exp is smaller than r1, it means that the
water splat comes to rest under the action of a mechanism
that is more effective as a transporter of momentum than
the laminar shear flow of Eq. (13). The only more effective
Table 3
Experimental measurements of the final diameter (D1,exp) of splats that
come to rest shaped as a disc, and comparison with the theoretical scale of
Eq. (13) (data from [5])

Liquid m
(m2/s)

r
(N/m)

V

(m/s)
D

(mm)
D1,exp

(mm)
r1/D1,exp

Silicone oil 10�4 21 0.89 2.84 4.5 1.6
Glycerin A 10�4 63 0.97 2.08 2.7 1.72
Glycerin A 10�4 63 0.96 2.64 3.9 1.70
Glycerin B 2 · 10�5 64 1.05 1.95 3.4 2.9
Glycerin B 2 · 10�5 64 1.98 1.92 4.2 3.14
Glycerin B 2 · 10�5 64 2.75 1.84 5.3 3
Water 10�6 73 0.90 2.71 6.4 10.5
mechanism known is turbulent flow [7]. Indeed, the initial
Reynolds number of the water droplet (VD/m � 3000) is
the same as the Reynolds number of the initial radial flow
of the deformed droplet. The value 3000 is two orders of
magnitude greater than the Reynolds number for the onset
of transversal waviness as in the fall of a film of condensate
[11]. In the case of the splat, Fig. 1, the transversal waviness
means concentric ripples, however, the value 3000 is high
enough for the radial flow to be turbulent.

A new theory defines the purpose of future experimental
work. For example, it would be interesting to record in
future experiments not only the final radius of the disc that
dies viscously, but also the radius of the still inviscid ring at
the time when it just begins to wrinkle. In this way the G
ratio of Eq. (40) could be calculated, and the wrinkling
criterion G P O(1) could be tested.

Another feature that deserves further study is the occur-
rence of turbulence in the flow of Fig. 1. This aspect illus-
trates another contribution of the theory: without theory,
the seven cases shown in Table 3 recommend themselves
as members of the same class. It is because of theory that
we have the additional insight and incentive to search for
turbulent flow features in disc-shaped splats before they
die viscously.

6. Conclusion

In this paper we showed that the ‘‘sometimes round,
sometimes crown’’ liquid droplets after impact can be rea-
soned as another manifestation of the constructal law. The
flowing liquid chooses the configuration that maximizes its
access, i.e. the architecture that allows it to flow the easiest
and come to rest the fastest. The choice between round
splats and splashing is dictated by the new dimensionless
group G, which physically means a ratio of two length
scales, cf. Eq. (40).

The most important message of this work is that, step by
step, the constructal law brings under the tent of construc-
tal theory a sequence of seemingly disconnected phenom-
ena, which until now had only one feature in common:
they had defied theory. Next to the examples with which
constructal theory began (turbulence, mud cracks, coales-
cence of solid particles, round blood vessels, river cross-
sections [6,7]), we now see the 23-level hierarchy of the
human lung [8], the hydraulic jump [9], and ‘evolutionary’
dendritic flow patterns for heat and fluid flow [14,15].
These many examples illustrate the ‘migration’ that flow
geometries exhibit in time, from nonequilibrium flow archi-
tectures to the equilibrium flow architectures that corre-
spond to the existing global constraints [16].

The list of new applications of the constructal law is
endless and deserves to be explored. Science itself is a flow

architecture, which optimizes itself in time: the list of the
unexplained becomes shorter thanks to the big tent offered
by the new and successful theory. Only by getting better
(compact, hierarchical, constructal) can observations keep
on flowing into our finite-size brains. Only by getting better
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(compact, hierarchical, constructal) can our brains main-
tain the outflow (science, knowledge), in spite of our
finite-size anything (cranium, food, life time).
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